Modulation of thrombin-induced neuroinflammation in BV-2 microglia by carbon monoxide-releasing molecule 3.
نویسندگان
چکیده
Carbon monoxide-releasing molecules are emerging as a new class of pharmacological agents that regulate important cellular function by liberating CO in biological systems. Here, we examined the role of carbon monoxide-releasing molecule 3 (CORM-3) in modulating neuroinflammatory responses in BV-2 microglial cells, considering its practical application as a novel therapeutic alternative in the treatment of stroke. BV-2 microglia cells were incubated for 24 h in normoxic conditions with thrombin alone or in combination with interferon-gamma to simulate the inflammatory response. Cells were also subjected to 12 h of hypoxia and reoxygenated for 24 h in the presence of thrombin and interferon-gamma. In both set of experiments, the anti-inflammatory action of CORM-3 was evaluated by assessing its effect on nitric oxide production (nitrite levels) and tumor necrosis factor (TNF)-alpha release. CORM-3 (75 microM) did not show any cytotoxicity and markedly attenuated the inflammatory response to thrombin and interferon-gamma in normoxia and to a lesser extent in hypoxia as evidenced by a reduction in nitrite levels and TNF-alpha production. Inactive CORM-3, which does not liberate CO and is used as a negative control, failed to prevent the increase in inflammatory mediators. Blockade of endogenous CO production by tin protoporphyrin-IX did not change the anti-inflammatory activity of CORM-3, suggesting that CO liberated from the compound is responsible for the observed effects. In addition, inhibition of the mitogen-activated protein kinases phosphatidyl inositol 3 kinase and extracellular signal-regulated kinase amplified the anti-inflammatory effect of CORM-3. These results suggest that the anti-inflammatory activity of CORM-3 could be exploited to mitigate microglia activity in stroke and other neuroinflammatory diseases.
منابع مشابه
No swan song for Baron Justus von Liebig.
38. Ozek M, Uresin Y, Güngör M: Comparison of the effects of specific and nonspecific inhibition of nitric oxide synthase on morphine analgesia, tolerance and dependence in mice. Life Sci 2003; 72:1943–51 39. Toda N, Kishioka S, Hatano Y, Toda H: Modulation of opioid actions by nitric oxide signaling. Anesthesiology 2009; 110:166–81 40. Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnel...
متن کاملMechanism(s) Involved in Carbon Monoxide-releasing Molecule-2-mediated Cardioprotection During Ischaemia-reperfusion Injury in Isolated Rat Heart
The purpose of the present study was to determine the mechanism(s) involved in carbon monoxide-releasing molecule-2, carbon monoxide-releasing molecule-2-induced cardioprotection. We used the transition metal carbonyl compound carbon monoxide-releasing molecule-2 that can act as carbon monoxide donor in cardiac ischaemia-reperfusion injury model using isolated rat heart preparation. Langendorff...
متن کاملA carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharide- and interferon-gamma-induced inflammation in microglia.
The development of carbon monoxide-releasing molecules (CO-RMs) in recent years helped to shed more light on the diverse range of anti-inflammatory and cytoprotective activities of CO gas. In this study, we examined the effect of a ruthenium-based water-soluble CO carrier (CORM-3) on lipopolysaccharide (LPS)- and interferon-gamma (INF-gamma)-induced inflammatory responses in BV-2 microglial cel...
متن کاملA carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharide- and interferon- -induced inflammation in microglia
The development of carbon monoxide-releasing molecules (CO-RMs) in recent years helped to shed more light on the diverse range of anti-inflammatory and cytoprotective activities of CO gas. In this study, we examined the effect of a ruthenium-based water-soluble CO carrier (CORM-3) on lipopolysaccharide (LPS)and interferon(INF)-induced inflammatory responses in BV-2 microglial cells and explored...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 318 3 شماره
صفحات -
تاریخ انتشار 2006